
Evaluation of random errors in the measurement of 

pressure 
This task deals with the evaluation of data and identifying various random errors of measurement 

readings. 

Assignment 

1. Accurately measure overpressure in the measured object. 

2. Identify random errors of individual readings, and the arithmetic average for a set of 10, 20 

and 30 measurements and compare their sizes. 

3. Construct an empirical error rates curve for a given set of measurements and evaluate their 

progress.  

Connection diagram 

Fig. 1 Block diagram 

Theoretical analysis 

a) Random errors (constancy errors) of individual measurements or the arithmetic average can be 

determined only from multiple measurements and statistical methods. They shall calculate the 

arithmetic average of the n measurements and are closer to the actual value of the measured 

quantity. We are talking about that the arithmetic mean �̅� is best estimate of the true value xS : 
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 In practical calculations we choose the number of measurements usually quite small, eg. n = 10 or 

even n = 5. Gauss (normal) distribution law of random errors assumes that the relative frequency or 

probability density error is expressed as: 
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Where 𝜎 = √
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𝑖=1   is the root mean square deviation. 

Progress of 𝜑(𝜀) is shown in Fig. 2. 

For a number of measurements  𝑛 ≪ ∞ - as it is often in practice, mean square deviation can only be 

estimated. One measurement error estimate Sx can be expressed as: 

  𝑆𝑥 = ±𝑘√
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Because it theoretically can also occur at relatively large errors (but considerably with low 

probability), it is possible to estimate the measurement errors also described as probability with witch 

there is a larger actual error in the errors less than the calculated error. Relationship between the 

ranges of the confidence interval ±𝜀𝑚(i.e. k-multiple of the mean quadratic deviation σ) and the 

probability that the true value of xS is within the limits of this interval is shown in the following 

table 1. 

In practice, we choose the size of the confidence interval and thus the coefficient k = 3, this means that 

the limit (maximum) random error ±𝜀𝑚 = ±3𝜏 = ±3𝑆𝑥, so the probability that the real measured 

value xs is in the range ±3SX is 99,73%, which is a large enough value . Individual measurement error 

estimates SX is the estimated error of each individual readings (regardless actually performed error) 

and is calculated so that we know with what error the unit continues to be measured at approximately 

the same conditions. More frequently used estimate of the random error of the arithmetic 

mean 𝑆�̅� which is given by 4. 

  

Fig. 2 Normal Gauss distribution law of random errors 



Table 1 

𝜀𝑚 = ±𝑘𝜏 = ±𝑘𝑆𝑥 The probability of occurrence values 𝑥𝑠 

0,5 0,383 0 

* 0,6745 0,500 0 

1,0 0,682 7 

* 2,0 0,954 5 

* 3,0 0,997 3 

4,0  0,999 937 

5,0  0,999 999 

* The most commonly used size of coefficient k 
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b) The procedure for constructing the empirical error rate curve corresponding to approximately 

Gauss normal distribution of random errors: 

1. We bring the size of both positive and negative apparent deviations ∆𝑖= �̅� − 𝑥𝑖 on the horizontal 

axis of Fig. 3. We mark each individual error on this axis with ring. 

2. We bring the total number of departures ∆𝑖 on the vertical axis. 

3. We select the appropriate size of the interval I for the horizontal axis and draw it on an assistant 

paper (eg. 1/5 ≤ ∆𝑚𝑎𝑥, +∆ max ≥ 1 𝑃𝑎) 

4. We move with this interval in appropriately small steps (eg. 1/5 I) on horizontal axis from one side 

to the other and gradually find out the number of the deviations ∆𝑖 in that interval I, which we bring on 

the vertical axis in the middle of interval I in scale (see example in Fig. 3). 

5. Final stepped curve would be for a sufficiently large number of measurements n (n>100), 

sufficiently small interval I and step feed be close to Gauss normal distribution of errors, provided that 

gross and systematic errors are excluded. To thus obtained curve we plot the calculated errors𝑆�̅�, 𝑆𝑥. 

  

Fig. 3 Construction of the empirical distribution curve of random errors 



Measurement procedure 

1. Before the measurement, we perform adjustment of micromanometer Askania (Fig. 4) to zero 

for a given barometric pressure. 

2. We will plug in fans via magnetic voltage stabilizer to eliminate errors due to voltage 

fluctuations. We will switch the ventilator into operation after stabilization run (about 20 

minutes), then we can measure the pressure of the compressed air device - a drying oven 

model. The first 10 measurement test is performed to eliminate the personal error in readings 

of pressure from micromanometer. 

3. We will measure the average static pressure at the supply point for a 30 times. For these 

measurements it is necessary to keep constant all the factors affecting the measurement (one 

observer performing reading of values, varying fan speed…) 

4. Micromanometer data will be considered without systematic errors. For the first 10, 20 and 30 

readings we will calculate the average, in order to evaluate differences in measurement results. 

For each number of measurements n = 10, n = 20, n = 30 we will calculate the estimate of the 

error of the arithmetic mean according to equation (4). Bring the sizes of reached errors in the 

table and graph and evaluate them! 

5. From a total of 30 measurements and their individual deviations ∆ [ Pa ] construct empirical 

Gauss curve of errors. Perform analysis of its process, evaluate the impact of systematic errors 

on the measurement, draw the curve of confidence intervals corresponding errors 𝑆�̅�, 𝑆𝑥. 

 

Table 2 Table of random measurement errors pressure 
n 𝑆�̅� [Pa] 𝑆𝑥 [Pa] 

10   

20   

30   

 

Addiction on the size of random errors of measurement 

 

  

𝑆�̅�, 𝑆𝑥[𝑃𝑎] 

 

n (number of 

measurements) 

 



Table 3 Air pressure measurements and calculations of random errors. 

𝑃𝑖 

[𝑚𝑚𝐻2𝑂] 
𝑃1 

[𝑃𝑎] 
∆= 𝑝10 − 𝑝1 

[𝑃𝑎] 
∆2 

[𝑃𝑎2] 
∆= 𝑝20 − 𝑝1 

[𝑃𝑎] 
∆2 

[𝑃𝑎2] 
∆= 𝑝30 − 𝑝1 

[𝑃𝑎] 
∆2 

[𝑃𝑎2] 

𝑃1 
 

 

𝑃10 
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𝑃11 
 

 

𝑃20 

      

 �̅�20  ∑(�̅�20 − 𝑃𝑖)2
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𝑃21 
 

 

𝑃30 

    

 �̅�30  ∑(�̅�30 − 𝑃𝑖)2
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Control questions 

1. Indicate the method of calculation of random errors in the n values. 

2. What is the difference between the estimate errors of the individual measurements and the 

estimation arithmetic mean? 

3. What expresses Gauss normal distribution of errors, which is given by the equation? 

4. Explain the principle of compensation micromanometer. 

Answers to questions 
  



Attachment n. 1 Compensation micromanometer “Askania“ 

This micromanometer measures the pressure or differential pressure of about 0,02 kp/cm2 ( 200 mm 

v.s.) = 1961,33 Pa exact measurement of the level difference cartriges (water) in continuous 

containers. Resolution is half scale interval ie. 0,005 mm v.s. 

Micromanometer adjustment to zero is carried out with the involvement of the source pressure. With 

screw Š and according to a scale with fine splitting S on the head of the screw H is container N set to 

zero. The entire micromanometer is set to prescribed positon with help of adjusting screws on the 

base. Then the level of measurement vessel M is adjusted using the adjusting nut A to zero. In this 

adjustment the tip must just touch its mirror image on the surface. (For very accurate measurement, the 

balance is set at a smaller positive value). 

Then screw set the estimated value of the pressure and the measured pressure or differential pressure 

will join. With screw H we move with vessel N so that the tip of the compensating vessel just touch 

the surface. In this case the pressure Ps is equal to the hydrostatic pressure of a column of liquid. We 

read his height from the scales S and H with accuracy of 0,01 mm (1 piece on scale H). This 

information is converted according the filling to pressure units according to SI. 

Fig. 4 Micromanometr Askania 


